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Abstract

Autism is a neurodevelopmental disorder that is defined behaviorally by severe deficiencies in reciprocal social interaction, verbal and

nonverbal communication, and restricted interests. The amygdala is involved in the regulation of social behaviors and may be an important

site of pathology for the social dysfunction seen in autism. This review focuses on lesion, postmortem, and neuroimaging studies that

investigate the amygdala and related structures in this disorder. Other brain regions potentially involved in the neuropathology of autism are

also briefly discussed. Although supportive evidence exists for amygdala dysfunction in autism, the currently available data are inconsistent

and additional research is needed. D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Autism is a neurodevelopmental disorder that becomes

manifest in the first 3 years of life. It is defined

behaviorally by severe deficiencies in reciprocal social

interaction, verbal and nonverbal communication, and a

markedly restricted repertoire of activities and interests

(APA, 1994). Associated phenomena can include mental

retardation, emotional indifference, hyperactivity, aggres-

sion, self-injury, and repetitive behaviors such as body

rocking or hand flapping. A related condition, Asperger’s

disorder, is characterized by significant social impairment

and restricted behaviors, but lacks the severe deficits in

communication and cognition.

Common to both autism and Asperger’s disorder is

severe social impairment. In the first description of autism,

Kanner (1943) described these children as having ‘‘an

innate inability to form the usual, biologically provided

affective contact with people.’’ While the cause of autism

remains unknown, genetic, neurochemical, and neuroana-

tomical studies have begun to yield preliminary findings

regarding the pathophysiology of the disorder. Although

numerous brain areas have been implicated in the neuro-

pathology of autism, the amygdala has been of particular

interest due to its role in social and aggressive behaviors

(Aggleton, 1992). This article will review lesion, postmor-

tem, and neuroimaging studies that have examined the role

of the amygdala in autism.

2. Human lesion studies

Localized disease of the brain can provide evidence for

the function of damaged areas. Temporal lobe structures,

including the amygdala and hippocampus, have been impli-

cated in the pathophysiology of autism following studies of

either damage to these areas in humans or experimental

lesions in animals.

In several case reports, children with severe temporal lobe

damage due to viral encephalitis (DeLong et al., 1981; Greer

et al., 1989; Gillberg, 1986), tumors (Taylor et al., 1999;

Hoon and Reiss, 1992), and other factors (Deonna et al.,

1993; White and Rosenbloom, 1992; DeLong and Heinz,

1997) have developed autistic symptoms. Children with

tuberous sclerosis have been reported to have a higher-

than-expected incidence of autism (Gillberg et al., 1994).

In these children, symptoms of autism are strongly related to

the presence of tubers in the temporal lobes (Bolton and

Griffiths, 1997). Additionally, amygdala damage has been

associated with impairments in the processing of facial

expressions in some cases (Adolphs et al., 1994, 1998; Young

et al., 1995). Abnormalities in this function are also reported
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in subjects with autism or Asperger’s disorder (Boucher and

Lewis, 1992; Davies et al., 1994; Schultz et al., 2000).

3. Experimental lesions and other animal studies

Experimental lesion studies in nonhuman primates pro-

vide further evidence for medial temporal lobe involvement

in autism. Some authors have noted similarities between

autism and the Kluver–Bucy syndrome, a syndrome caused

by bilateral lesions to the anterior temporal lobes in mon-

keys (Kluver and Bucy, 1939; Heltzler and Griffin, 1981).

Monkeys with the Kluver–Bucy syndrome display features

often seen in autistic subjects such as absence of social

‘‘chattering,’’ lack of facial expression, and absence of

emotional reactions. Other such similarities include repet-

itive abnormal movement patterns, increased aggression,

and the tendency to examine objects by mouth or smell.

More specific research has focused on newborn monkeys

who sustained bilateral removal of the amygdala, hippocam-

pus, and adjacent cortical areas (Bachevalier, 1994, 1996).

By 6 months of age, these monkeys were uninterested in and

avoided social contacts. They also developed autistic-like

characteristics, such as unexpressive faces, very little eye

contact, locomotor stereotypies, and self-directed activity.

These behaviors persisted into adulthood. However, mon-

keys receiving similar lesions as adults did not sustain such

severe social deficits or display any other of the behavioral

abnormalities (Malkova et al., 1997).

Further studies along these lines were undertaken to

determine the effects of early amygdala versus hippocampal

lesions (Bachevalier, 1994, 1996). Early amygdala damage

caused a pattern of socioemotional disturbance almost

identical to that described for complete medial temporal

lobe lesions, but to a lesser extent. However, amygdala-

lesioned animals did not show stereotypic behaviors or loss

of facial expression. Early damage to the hippocampus

alone caused some degree of socioemotional disturbance

by 2 months of age, but by 6 months, these disturbances

were not apparent. The author concluded that early damage

to the amygdaloid complex appears to be more closely

related to the emergence of autistic-like behavior than early

damage to the hippocampal formation. The most severe

autistic-like syndrome appeared only following combined

damage to the amygdala, the hippocampus, and adjacent

cortical areas.

Many animal studies have also supported the role of the

amygdala in the regulation of social behaviors, particularly

dyadic social interactions with a novel conspecific partner

(Sanders and Shekhar, 1995; Sajdyk and Shekhar, 1997;

Emery et al., 2001). Physiological activation of the baso-

lateral nucleus of the amygdala (BLA) in rats, by either

blocking tonic GABAergic inhibition or by enhancing

glutamate or the stress-associated peptide corticotropin-

releasing factor (CRF; or other CRF receptor agonists

such as Urocortin, Ucn)-mediated excitation, causes reduc-

tions in social behaviors (Sajdyk and Shekhar, 2000;

Sajdyk et al., 1999). On the other hand, lesioning of the

amygdala (Emery et al., 2001) or blocking amygdala

excitability with glutamate antagonists (Sajdyk and Shek-

har, 1997) results in increased dyadic social interaction in

conspecifics. More interestingly, overstimulation of the

BLA by CRF elicits a profound and chronic disruption

of social behaviors that are not restored by becoming

familiar with the environment or partners (Shekhar and

Sajdyk, unpublished results). In summary, both disease-

associated alterations in the temporal lobes in humans and

experimental manipulations of the amygdala in animals

have produced syndromes with striking similarities to the

social deficits in autism.

4. Postmortem studies

Approximately 30 postmortem cases of subjects exhib-

iting the behavioral syndrome of autism have been

described. The largest group of cases consists of nine brains

examined by Kemper and Bauman (1998). Compared to

age- and sex-matched controls, microscopic amygdala

abnormalities were described in all of these cases. Abnor-

malities consisted of small neuronal size and increased cell

packing density predominantly in the cortical, medial, and

central nuclei of the amygdala, whereas the basolateral

complex showed an intermediate degree of involvement.

The lateral nucleus of the amygdala appeared to be com-

parable to controls in eight of nine brains. The one

exception to this pattern of pathology involved a 12-year-

old boy whose entire amygdala was diffusely abnormal.

Relatively small and densely packed neurons were also

observed in hippocampal fields CA1–CA4, the subiculum,

entorhinal cortex, mammillary bodies, medial septal nu-

cleus, and anterior cingulate gyrus of all the autistic brains.

Neurons in the diagonal band of Broca, deep cerebellar

nuclei, and inferior olive were enlarged in all brains of

subjects under 22 years of age, but small and pale or

reduced in number in those of subjects 22 years of age or

older. Purkinje cells of the cerebellum were reduced in

number in all nine brains (Kemper and Bauman, 1998). In

two of these cases, the neurons in hippocampal fields CA1

and CA4 showed reduced complexity and extent of their

dendritic arbors (Raymond et al., 1996). Although one

additional case report has found abnormal pathology in

the temporal lobes, including the amygdala (Bailey et al.,

1998), several other neuropathological studies have not

found abnormalities of the amygdala or its related structures

in subjects with autism (Williams et al., 1980; Coleman

et al., 1985; Ritvo et al., 1984; Guerin et al., 1996; Rodier

et al., 1996; Bailey et al., 1998).

Some of these discrepancies may be due to the different

neuropathological techniques utilized and the degree of

microscopic anatomy that was studied in the different investi-

gations. Further research is needed into the microscopic
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abnormalities of the amygdala in autism in order to replicate

and extend the findings of Kemper and Bauman (1998).

5. Structural neuroimaging studies

Early neuroimaging studies using computerized axial

tomography (CAT) scans did not find consistent evidence

for major brain abnormalities in individuals with autism

(Campbell et al., 1982; Creasey et al., 1986). The devel-

opment of magnetic resonance imaging (MRI) and its better

ability to quantify volumes of brain structures gave inves-

tigators a tool to measure the size of discrete brain structures.

Three investigations using MRI have found some differ-

ences in mesial temporal lobe structures in autism. The most

recent of these studies focused on the amygdala by esti-

mating volumes of the amygdala and related structures in 10

‘‘high-functioning’’ autistic/Asperger’s disorder subjects

(ages 15–40 years) and 10 healthy controls matched for

age, gender, and verbal IQ (Howard et al., 2000). Bilateral

amygdala volume was significantly increased in the autistic

subjects, whereas hippocampal and parahippocampal gyrus

volumes were marginally reduced. No differences in overall

temporal lobe volumes were found, but subjects with

autistic spectrum disorders had significantly larger lateral

ventricles and intracranial volumes. Neuropsychological

testing revealed that the autistic subjects were impaired in

their ability to identify facial expressions of fear, eye gaze

direction, and facial recognition memory as has also been

seen in some individuals with amygdala damage (Young

et al., 1995).

Aylward et al. (1999) estimated volumes of the hip-

pocampus, amygdala, and total brain in 14 nonmentally

retarded autistic males (ages 11–37 years) and age-, race-,

gender-, and IQ-matched controls. Amygdala volume was

found to be significantly decreased in the autistic subjects,

both with and without correction for total brain volume.

Total brain volume and absolute hippocampal volume did

not differ significantly between the groups. However, when

corrected for total brain volume, hippocampal volume was

significantly reduced in the autistic subjects.

Using MRI, Abell et al. (1999) performed whole brain

voxel-based scans of 15 high-functioning young adults with

autism (average age 28 years) and 15 normal controls

matched for age, gender, handedness, and performance on

tests of verbal and nonverbal ability. A number of differ-

ences were identified between the groups. In the autistic

group, decreased gray matter volume was found in the right

paracingulate sulcus, the left occipito-temporal cortex, and

the left inferior frontal sulcus. Increased volume was

observed in the left amygdala/periamygdaloid cortex, the

right inferior temporal gyrus, and the left middle temporal

gyrus. As well, there were bilateral increases in gray matter

volume in the cerebellum of the autistic subjects.

Five other MRI studies have failed to find abnormalities

in mesial temporal lobe structures in autistic subjects com-

pared to controls. Haznedar et al. (2000) compared hippo-

campal and amygdala volumes of 10 subjects with autism

and 7 subjects with Asperger’s disorder (mean age 28 years)

with age- and gender-matched healthy controls. Volumes of

these structures did not differ between the two groups.

However, significantly greater left amygdala volume was

seen in the subjects with Asperger’s disorder than in the

autistic subjects. Significant differences were seen in the

right anterior cingulate gyrus, specifically Brodmann’s area

24, where subjects with autistic spectrum disorders had

smaller volumes compared to healthy controls.

In 21 subjects (ages 6–32 years) studied by Courchesne

et al. (1993), no autistic subjects had abnormalities in limbic

structures compared to subjects from three separate control

groups. In addition, no abnormalities were seen in the

temporal lobe, basal ganglia, diencephalon, ventricles, or

brainstem. In another study, a review of MRI of 53 autistic

subjects and 32 age-matched controls found no abnormal-

ities in the amygdala or limbic system in any of the autistic

subjects (Nowell et al., 1990).

Two of these five negative studies have focused on

hippocampal size in autistic individuals. Cross-sectional

areas of the hippocampus, including the subiculum and the

dentate gyrus, of 33 autistic subjects (ages 6–42 years) did

not differ from 23 age-matched healthy controls (Saitoh et

al., 1995). Also, no difference was found in the temporal

horn of the lateral ventricles. However, analysis of the corpus

callosum revealed that the midsaggital area or the most

posterior subregion was significantly smaller in the autistic

subjects. Other researchers have found similar reductions in

the corpus callosum (Manes et al., 1999; Piven et al., 1997).

Piven et al. (1998) found no difference in the estimated

volume of the hippocampus between 35 autistic subjects

(ages 12–29 years) and 36 healthy age- and IQ-matched

controls in a study that controlled for total brain volume.

An interesting case study of a pair of monozygotic twin

boys discordant for strictly defined autism compared their

brain anatomy using quantitative MRI (Kates et al., 1998).

The twin with autism had markedly smaller amygdalar,

hippocampal, and caudate volumes and smaller cerebellar

vermal lobules VI and VII compared to his twin brother.

Taken together, studies using MRI show inconsistent

results regarding the size of the amygdala and related

structures in autism. However, there is a wide range of

patient populations and severity of psychopathology in

these studies. Taking into account such differences, it is

suggestive that at least in some subgroups of autistic

children, amygdalar pathology may contribute to the deficits

in function.

6. Functional neuroimaging studies

Positron emission tomography (PET), single-photon

emission computed tomography (SPECT), magnetic reso-

nance spectroscopy (MRS), and functional MRI (fMRI)
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have greatly increased our ability to study the pathophysi-

ology of autism.

One PET study focused on the amygdala and hippocam-

pus. Ten subjects with autism and seven with Asperger’s

disorder (mean age 27.7 years) were compared with 17 age-

and sex-matched healthy controls. 18Fluorodeoxyglucose

was administered while subjects performed a serial verbal

learning test. No significant group metabolic differences

were found in the amygdala or the hippocampus (Haznedar

et al., 2000).

A recent technetium-99m (Tc-99m) ethyl cysteinate

dimer (ECD) SPECT study of 23 children with autism (ages

2–13 years) and 26 age- and gender-matched mentally

retarded controls found a decrease in regional cerebral blood

flow (rCBF) in the bilateral insula, superior temporal gyri,

and left prefrontal cortices in autistic subjects. As well, a

positive correlation was found between rCBF in both the

right hippocampus and amygdala and a behavioral rating

subscale measuring ‘‘obsessive desire for sameness.’’ Scores

on a subscale measuring ‘‘impairment in communication

and social interactions’’ correlated positively with rCBF in

the left medial prefrontal cortex and the anterior cingulate

gyrus (Ohnishi et al., 2000).

Otsuka et al. (1999) used proton MRS to detect brain

metabolites in the right hippocampal–amygdala region and

the left cerebellar hemisphere. Twenty-seven autistic sub-

jects (ages 2–18 years) were compared with 10 normal

children (ages 6–14 years). Metabolite peaks were calcu-

lated for N-acetyl aspartate (NAA), creatine, and choline.

NAA levels were significantly lower in the autistic subjects

in both areas, whereas the other metabolites did not differ

between groups. The investigators hypothesized that lower

levels of NAA in these regions may indicate neuronal

hypofunction or immature neurons.

Two fMRI studies have demonstrated a deficiency in

amygdala activation during specific tasks in autistic spec-

trum disorder subjects. Baron-Cohen et al. (1999) presented

photographs of eyes to six individuals with high-functioning

autism or Asperger’s disorder (mean age 26.3 years) and 12

age- and IQ-matched normal controls. Participants were

asked to discern the mental state of the photographed person

while undergoing imaging. The control group demonstrated

significantly greater activation in the left amygdala, right

insula, and left inferior frontal gyrus during the task. The

autistic group did not activate the left amygdala at all, but

demonstrated significantly greater activity bilaterally in the

superior temporal gyrus.

In a similar study, Critchley et al. (2000) investigated the

brain activity of nine adult males (mean age 37 years) with

Asperger’s disorder or high-functioning autism and nine age-,

gender-, and intelligence-matched controls. In two separate

tasks, participants were asked to determine emotion or gender

in a series of facial photographs while undergoing imaging.

Overall, individuals with autistic spectrum disorders had

significantly greater activity than controls in the left superior

temporal gyrus and the left peristriate visual cortex, whereas

controls had significantly more activity in the right fusiform

cortex. While determining gender, subjects with autistic

spectrum disorders showed less activity than controls in the

left cerebellum and left amygdala–hippocampal region.

However, when determining emotional facial expressions,

the left middle temporal gyrus was activated in controls but

not in autistic spectrum disorder subjects.

In summary, several recent studies using functional

neuroimaging technologies have provided preliminary evid-

ence of amygdala dysfunction in autism. Replication of

these studies is needed to better determine the role of the

amygdala and related areas in autism.

7. Additional brain regions implicated in the

pathophysiology of autism

In addition to the amygdala and related structures, other

brain regions have been implicated in the pathophysiology

of autism. For example, neuropathological studies have

identified abnormalities in the brainstem and cerebellum

(Bailey et al., 1998; Kemper and Bauman, 1998). To date, at

least 20 autopsy cases have reported reduced cerebellar

Purkinje cell counts (Ritvo et al., 1984; Williams et al.,

1980; Bailey et al., 1998; Kemper and Bauman, 1998;

Fehlow et al., 1993).

Early structural neuroimaging studies using pneumoen-

cephalography found abnormalities in the ventricles, in

particular enlargement of the left temporal horn, in autistic

children (Hauser et al., 1975). However, later studies using

CAT scans found ventricular enlargement in a much smaller

subset of subjects, if at all (Campbell et al., 1982; Caparulo

et al., 1981, Damasio et al., 1980; Creasey et al., 1986).

Subsequent CAT and MRI studies focused on the brainstem,

midbrain, and cerebellum. Some investigators found

reduced brainstem, midbrain, or pons size (Gaffney et al.,

1988; Hashimoto et al., 1991, 1992), increased fourth

ventricle size (Gaffney et al., 1987a), or cerebellar atrophy,

specifically of vermal lobes VI and VII (Courchesne et al.,

1988; Gaffney et al., 1987b; Murakami et al., 1989; Saitoh

et al., 1995). Other studies, however, have found no differ-

ences in the size of the brainstem, midbrain, or pons (Hsu

et al., 1991; Elia et al., 2000; Garber and Ritvo, 1992;

Courchesne et al., 1993), fourth ventricle (Rumsey et al.,

1988; Garber and Ritvo 1992; Garber et al., 1989; Holttum

et al., 1992; Nowell et al., 1990) or cerebellum (Rumsey

et al., 1988; Nowell et al., 1990; Elia et al., 2000; Garber

and Ritvo, 1992; Holttum et al., 1992; Kleiman et al., 1992).

Some MRI studies have found enlarged cortical brain size

(Piven et al., 1995), specifically of the temporal, parietal,

and occipital lobes (Piven et al., 1996), as well as other

diffuse cortical abnormalities (Piven et al., 1990). Inves-

tigation of basal ganglia structures has yielded inconsistent

results. Caudate size in adult autistics has been found to be

normal (Creasey et al., 1986), decreased (Jacobson et al.,

1988), or increased (Sears et al., 1999).
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Results from functional neuroimaging studies have

implicated various cortical lobes including the frontal (Zil-

bovicius et al., 1995), temporal (Gillberg et al., 1993;

Zilbovicius et al., 2000), frontal and temporal (George

et al., 1992; Hashimoto et al., 2000; Ohnishi et al., 2000),

temporal and parietal (Mountz et al., 1995), temporal and

occipital (Starkstein et al., 2000), and frontal and parietal

(Horwitz et al., 1988). Other areas with noted abnormalities

include the cingulate gyrus (Haznedar et al., 1997, 2000),

thalamus (Horwitz et al., 1988; Starkstein et al., 2000;

Buchsbaum et al., 1992; Ryu et al., 1999), dentato-tha-

lamo-cortical pathway (Muller et al., 1998; Chugani et al.,

1997), and basal ganglia (Buchsbaum et al., 1992; Horwitz

et al., 1988; Starkstein et al., 2000). Hypoperfusion was

observed in most of the above studies. In the cerebellum,

some (Ryu et al., 1999; Muller et al., 1999; Chugani et al.,

1999) but not all studies (Hashimoto et al., 2000; Heh et al.,

1989) have reported evidence of reduced activation.

For a more detailed review of results from neuropatho-

logical and neuroimaging studies in autism, the reader is

referred to recent summaries by Minshew et al. (1997),

and Deb and Thompson (1998) and Rumsey and Ernst

(2000), respectively.

8. Conclusion

Behaviors associated with damage to the amygdala and

related temporal lobe structures in humans and nonhuman

primates are strikingly similar to those seen in autism.

Further evidence for the role of the amygdala in the

pathophysiology of autism also comes from neuropatho-

logical and neuroimaging studies. However, not all of these

studies have demonstrated consistent results and the extent

to which amygdala dysfunction is involved in autism

remains to be more fully elucidated. Although evidence

of amygdala dysfunction in autism is presently inconclus-

ive, it remains an area of much interest and active inves-

tigation. Abnormal social behavior is the core clinical

element of impairment in autism and the amygdala has

long been known for its involvement in social behavior in

animals (Kling and Brothers, 1992). Recent animal studies

have also implicated the amygdala as critical to dyadic

social interactions (Sanders and Shekhar, 1995; Sajdyk and

Shekhar, 1997; Emery et al., 2001). Secondary symptoms

of increased aggression and emotional indifference could

also be explained by amygdala dysfunction (Ramamurthi,

1988; Vaernet, 1972; Vaernet and Madsen, 1970). Further-

more, the amygdala is important in the processing of facial

expressions (Thomas et al., 2001; Young et al., 1995;

Adolphs et al., 1994), and many studies have shown

abnormalities in this function in subjects with autism or

Asperger’s disorder (Boucher and Lewis, 1992; Schultz et al.,

2000; Davies et al., 1994). Further research is needed to

replicate these findings and determine the extent of involve-

ment of the amygdala and related structures in autism.
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